Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2014 ] Pita M, Maté D, González-Pérez D, Shleev S, Fernández VM, Alcalde M, De Lacey AL Bioelectrochemical Oxidation of Water J. Am. Chem. Soc., 136: 5892-5895
[ 2014 ] Piumi F, Levasseur A, Navarro D, Zhou S, Macellaro G, Mathieu Y, Ropartz D, Ludwig R, Faulds CB, Record E A novel glucose dehydrogenase from the white-rot fungus Pycnoporus cinnabarinus: production in Aspergillus niger and physicochemical characterization of the recombinant enzyme. Appl. Microbiol. Biotechnol., 98: 10105-10118
[ 2014 ] Rico A, Rencoret J, del Río JC, Martínez AT, Gutiérrez A Pretreatment with laccase and a phenolic mediator degrades lignin and enhances saccharification of Eucalyptus feedstock Biotechnol. Biofuels, 7: 6
[ 2013 ] Babot ED, del Río JC, Kalum L, Martínez AT, Gutiérrez A Oxyfunctionalization of aliphatic compounds by a recombinant peroxygenase from Coprinopsis cinerea Biotechnol. Bioeng., 110: 2323-2332
[ 2013 ] Bey M, Zhou S, Poidevin L, Henrissat B, Coutinho PM, Berrin JG, Sigoillot JC Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina Appl. Environ. Microbiol., 79: 488-496
[ 2013 ] Carabajal M, Kellner H, Levin L, Jehmlich N, Hofrichter M, Ullrich R The secretome of Trametes versicolor grown on tomato juice medium and purification of the secreted oxidoreductases including a versatile peroxidase J. Biotech., 168: 15-23
year2013
Structural Basis of Substrate Conversion in a New Aromatic Peroxygenase: P450 Functionality with Benefits
Piontek K, Strittmatter E, Ullrich R, Gröbe G, Pecyna MJ, Kluge M, Scheibner K, Hofrichter M, Plattner D
J. Biol. Chem., 288: 34767-34776
Aromatic peroxygenases (APOs) represent a unique oxidoreductase sub-subclass of heme proteins with peroxygenase and peroxidase activity and were thus recently assigned a distinct EC classification (EC 1.11.2.1). They catalyze, inter alia, oxyfunctionalization reactions of aromatic and aliphatic hydrocarbons with remarkable regio and stereoselectivities. Compared with cytochrome P450, APOs appear to be the choice enzymes for oxyfunctionalizations in organic synthesis due to their independence from a cellular environment and their greater chemical versatility. Here, the first two crystal structures of a heavily glycosylated fungal aromatic peroxygenase (AaeAPO) are described. They reveal different pH-dependent ligand-binding modes. We model the fitting of various substrates in AaeAPO, illustrating the way the enzyme oxygenates polycyclic aromatic hydrocarbons (PAHs). Spatial restrictions by a phenylalanine pentad in the active-site environment govern substrate specificity in AaeAPO.
Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón