Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2014 ] Levasseur A, Lomascolo A, Chabrol O, Ruiz-Dueñas FJ, [...] , Martínez AT, [...] , Record E The genome of the white-rot fungus Pycnoporus cinnabarinus: a basidiomycete model with a versatile arsenal for lignocellulosic biomass breakdown BMC Genomics, 15: 486
[ 2014 ] Linde D, Coscolín C, Liers C, Hofrichter M, Martínez AT, Ruiz-Dueñas FJ Heterologous expression and physicochemical characterization of a fungal dye-decolorizing peroxidase from Auricularia auricula-judae Protein Expr. Purif., 103: 28-37
[ 2014 ] Macellaro G, Baratto MC, Piscitelli A, Pezzella C, Fabrizi de Biani F, Palmese A, Piumi F, Record E, Basosi R, Sannia G Effective mutations in a high redox potential laccase from Pleurotus ostreatus Appl. Microbiol. Biotechnol., doi: 10.1007/s00253-013-5491-8
[ 2014 ] Macellaro G, Pezzella C, Cicatiello P, Sannia G, Piscitelli A Fungal Laccases Degradation of Endocrine Disrupting Compounds BioMed Research International, doi: 10.1155/2014/614038
[ 2014 ] Martínez AT, Ruiz-Dueñas FJ, Gutiérrez A, del Río JC, Alcalde M, Liers C, Ullrich R, Hofrichter M, Scheibner K, Kalum L, Vind J, Lund H Search, engineering, and applications of new oxidative biocatalysts Biofuels, Bioprod. Bioref., 8: 819-835
[ 2014 ] Molina-Espeja P, García-Ruiz E, González-Pérez D, Ullrich R, Hofrichter M, Alcalde M Directed evolution of Unspecific Peroxygenase from Agrocybe aegerita Appl. Environ. Microbiol., 80: 3496-3507
year2013
Cello-oligosaccharide oxidation reveals differences between two lytic polysaccharide monooxygenases (family GH61) from Podospora anserina
Bey M, Zhou S, Poidevin L, Henrissat B, Coutinho PM, Berrin JG, Sigoillot JC
Appl. Environ. Microbiol., 79: 488-496

The genome of the coprophilic ascomycete Podospora anserina encodes 33 different genes encoding copper-dependent lytic polysaccharide monooxygenases (LPMOs) from glycoside hydrolase family 61 (GH61). In this study, two of these enzymes (P. anserina GH61A [PaGH61A] and PaGH61B), which both harbored a family 1 carbohydrate binding module, were successfully produced in Pichia pastoris. Synergistic cooperation between PaGH61A or PaGH61B with the cellobiose dehydrogenase (CDH) of Pycnoporus cinnabarinus on cellulose resulted in the formation of oxidized and nonoxidized cello-oligosaccharides. A striking difference between PaGH61A and PaGH61B was observed through the identification of the products, among which were doubly and triply oxidized cellodextrins, which were released only by the combination of PaGH61B with CDH. The mass spectrometry fragmentation patterns of these oxidized products could be consistent with oxidation at the C-6 position with a geminal diol group. The different properties of PaGH61A and PaGH61B and their effect on the interaction with CDH are discussed in regard to the proposed in vivo function of the CDH/GH61 enzyme system in oxidative cellulose hydrolysis.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón