Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2014 ] González-Pérez D, Molina-Espeja P, García-Ruiz E, Alcalde M Mutagenic Organized Recombination Process by Homologous In vivo Grouping (MORPHING) for directed enzyme evolution PlosOne, 9: 3
[ 2014 ] Hofrichter M, Ullrich R Oxidations catalyzed by fungal peroxygenases Curr. Opin. Chem. Biol., 19: 116-125
[ 2014 ] Hori C, [...] , Ferreira P, Ruiz-Dueñas FJ, [...] , Rencoret J, Gutiérrez A, [...] , Martínez AT, [...] , Cullen D Analysis of the Phlebiopsis gigantea Genome, Transcriptome and Secretome Provides Insight into Its Pioneer Colonization Strategies of Wood PLOS Genetics, 10: 1004759
[ 2014 ] Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R, Ludwig R, Haltrich D, Eijsink VG, Horn SJ A C4-oxidizing lytic polysaccharide monooxygenase cleaving both cellulose and cello-oligosaccharides J. Biol. Chem., 289: 2632-2642
[ 2014 ] Kalum L, Morant MD, Lund H, Jensen J, Lapainaite I, Soerensen NH, Pedersen S, Ostergaard LH, Xu F Enzymatic oxidation of 5-hydroxymethylfurfural and derivatives thereof. WO 2014015256 A2. International Patent Application
[ 2014 ] Kellner H, Luis P, Pecyna MJ, Barbi F, Kapturska D, Krüger D, Zak DR, Marmeisse R, Vandenbol M, Hofrichter M Widespread Occurrence of Expressed Fungal Secretory Peroxidases in Forest Soils PlosOne, 9
year2014
Fungal Laccases Degradation of Endocrine Disrupting Compounds
Macellaro G, Pezzella C, Cicatiello P, Sannia G, Piscitelli A
BioMed Research International, doi: 10.1155/2014/614038

Over the past decades, water pollution by trace organic compounds (ng/L) has become one of the key environmental issues in developed countries. This is the case of the emerging contaminants called endocrine disrupting compounds (EDCs). EDCs are a new class of environmental pollutants able to mimic or antagonize the effects of endogenous hormones, and are recently drawing scientific and public attention. Their widespread presence in the environment solicits the need of their removal from the contaminated sites. One promising approach to face this challenge consists in the use of enzymatic systems able to react with these molecules. Among the possible enzymes, oxidative enzymes are attracting increasing attention because of their versatility, the possibility to produce them on large scale, and to modify their properties. In this study five different EDCs were treated with four different fungal laccases, also in the presence of both synthetic and natural mediators. Mediators significantly increased the efficiency of the enzymatic treatment, promoting the degradation of substrates recalcitrant to laccase oxidation. The laccase showing the best performances was chosen to further investigate its oxidative capabilities against micropollutant mixtures. Improvement of enzyme performances in nonylphenol degradation rate was achieved through immobilization on glass beads.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón