Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2015 ] Monza E, Lucas F, Camarero S, Alejaldre LC, Martínez AT, Guallar V Insights into Laccase Engineering from Molecular Simulations: Toward a Binding-Focused Strategy J. Phys. Chem. Lett., 6: 1447-1453
[ 2015 ] Ni Y, Fernandez-Fueyo E, Baraibar AG, Ullrich R, Hofrichter M, Yanase H, Alcalde M, van Berkel WJ, Hollmann F Peroxygenase-Catalyzed Oxyfunctionalization Reactions Promoted by the Complete Oxidation of Methanol Angew. Chem. Int. Ed., doi: 10.1002/anie.201507881
[ 2015 ] Pardo I, Camarero S Laccase engineering by rational and evolutionary design Cell Mol. Life Sci., doi: 10.1007/s00018-014-1824-8
[ 2015 ] Pardo I, Camarero S Exploring the Oxidation of Lignin-Derived Phenols by a Library of Laccase Mutants Molecules, 20: 15929-15943
[ 2015 ] Pezzella C, Guarino L, Piscitelli A How to enjoy laccases Cell Mol. Life Sci., 72: 923-940
[ 2015 ] Pham NH, Hollmann F, Kracher D, Preims M, Haltrich D, Ludwig R Engineering an enzymatic regeneration system for NAD(P)H oxidation J. Mol. Cat. B, 120: 38-46
year2014
Structural implications of the C-terminal tail in the catalytic and stability properties of manganese peroxidases from ligninolytic fungi
Fernandez-Fueyo E, Acebes S, Ruiz-Dueñas FJ, Martínez MJ, Romero A, Medrano FJ, Guallar V, Martínez AT
Acta Crystal. D, 70: 3253-3265

The genome of Ceriporiopsis subvermispora includes 13 manganese peroxidase (MnP) genes representative of the three subfamilies described in ligninolytic fungi, which share an Mn2+-oxidation site and have varying lengths of the C-terminal tail. Short, long and extralong MnPs were heterologously expressed and biochemically characterized, and the first structure of an extralong MnP was solved. Its C-terminal tail surrounds the haem-propionate access channel, contributing to Mn2+ oxidation by the internal propionate, but prevents the oxidation of 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS), which is only oxidized by short MnPs and by shortened-tail variants from site-directed mutagenesis. The tail, which is anchored by numerous contacts, not only affects the catalytic properties of long/extralong MnPs but is also associated with their high acidic stability. Cd2+ binds at the Mn2+-oxidation site and competitively inhibits oxidation of both Mn2+ and ABTS. Moreover, mutations blocking the haem-propionate channel prevent substrate oxidation. This agrees with molecular simulations that position ABTS at an electron-transfer distance from the haem propionates of an in silico shortened-tail form, while it cannot reach this position in the extralong MnP crystal structure. Only small differences exist between the long and the extralong MnPs, which do not justify their classification as two different subfamilies, but they significantly differ from the short MnPs, with the presence/absence of the C-terminal tail extension being implicated in these differences.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón