Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 126
Pages:    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2016 ] Pardo I, Santiago G, Gentili P, Lucas F, Monza E, Medrano FJ, Galli C, Martínez AT, Guallar V, Camarero S Re-designing the substrate binding pocket of laccase for enhanced oxidation of sinapic acid Catal. Sci. Technol., doi: 10.1039/C5CY01725D
[ 2016 ] Rencoret J, Pereira A, del Río JC, Martínez AT, Gutiérrez A Laccase-Mediator Pretreatment of Wheat Straw Degrades Lignin and Improves Saccharification Bioenerg. Res., 9: 917-930
[ 2016 ] Saez-Jimenez V, Acebes S, García-Ruiz E, Romero A, Guallar V, Alcalde M, Medrano FJ, Martínez AT, Ruiz-Dueñas FJ Unveiling the basis of alkaline stability of an evolved versatile peroxidase Biochem. J., 473: 1917-1928
[ 2016 ] Saez-Jimenez V, Rencoret J, Rodríguez-Carvajal MA, Gutiérrez A, Ruiz-Dueñas FJ, Martínez AT Role of surface tryptophan for peroxidase oxidation of nonphenolic lignin Biotechnol. Biofuels, 9: 198-211
[ 2016 ] Salvachúa D, Katahira R, Cleveland NS, Khanna P, Resch MG, Black BA, Purvine SO, Zink EM, Prieto A, Martínez MJ, Martínez AT, Simmons BA, Gladden JM, Beckham GT Lignin depolymerization by fungal secretomes and a microbial sink Green Chem., doi: 10.1039/C6GC01531J
[ 2016 ] Santiago G, de Salas F, Lucas F, Monza E, Acebes S, Martínez AT, Camarero S, Guallar V Computer-Aided Laccase Engineering: Toward Biological Oxidation of Arylamines ACS-Catalysis, 6: 5415-5423
year2016
Unveiling the basis of alkaline stability of an evolved versatile peroxidase
Saez-Jimenez V, Acebes S, García-Ruiz E, Romero A, Guallar V, Alcalde M, Medrano FJ, Martínez AT, Ruiz-Dueñas FJ
Biochem. J., 473: 1917-1928

A variant of high biotechnological interest (called 2-1B) was obtained by directed evolution of the Pleurotus eryngii VP (versatile peroxidase) expressed in Saccharomyces cerevisiae [García-Ruiz, González-Pérez, Ruiz-Dueñas, Martínez and Alcalde (2012) Biochem. J. 441: , 487-498]. 2-1B shows seven mutations in the mature protein that resulted in improved functional expression, activity and thermostability, along with a remarkable stronger alkaline stability (it retains 60% of the initial activity after 120 h of incubation at pH 9 compared with complete inactivation of the native enzyme after only 1 h). The latter is highly demanded for biorefinery applications. In the present study we investigate the structural basis behind the enhanced alkaline stabilization of this evolved enzyme. In order to do this, several VP variants containing one or several of the mutations present in 2-1B were expressed in Escherichia coli, and their alkaline stability and biochemical properties were determined. In addition, the crystal structures of 2-1B and one of the intermediate variants were solved and carefully analysed, and molecular dynamics simulations were carried out. We concluded that the introduction of three basic residues in VP (Lys-37, Arg-39 and Arg-330) led to new connections between haem and helix B (where the distal histidine residue is located), and formation of new electrostatic interactions, that avoided the hexa-co-ordination of the haem iron. These new structural determinants stabilized the haem and its environment, helping to maintain the structural enzyme integrity (with penta-co-ordinated haem iron) under alkaline conditions. Moreover, the reinforcement of the solvent-exposed area around Gln-305 in the proximal side, prompted by the Q202L mutation, further enhanced the stability.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón