Optimized oxidoreductases for medium and large scale industrial biotransformations
CLOSE
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
CLOSE
Private area
User:


Password:

publications
Total records: 122
Pages:   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21  

[ 2018 ] Carro J, Fernandez-Fueyo E, Fernández-Alonso C, Cañada J, Ullrich R, Hofrichter M, Alcalde M, Ferreira P, Martínez AT Self-sustained enzymatic cascade for the production of 2,5-furandicarboxylic acid from 5-methoxymethylfurfural Biotechnol. Biofuels, 11: 86-96
[ 2018 ] Carro J, Ferreira P, Martínez AT, Gadda G Stepwise Hydrogen Atom and Proton Transfers in Dioxygen Reduction by Aryl-Alcohol Oxidase Biochemistry, doi: 10.1021/acs.biochem.8b00106
[ 2018 ] Ewing TA, van Noord A, Paul CE, van Berkel WJ A Xylenol Orange-Based Screening Assay for the Substrate Specificity of Flavin-Dependent para-Phenol Oxidases Molecules, 23: 164-182
[ 2018 ] Gygli G, de Vries RP, van Berkel WJ On the origin of vanillyl alcohol oxidases Fungal Gen. Biol., 116: 24-32
[ 2018 ] Leonhardt S, Büttner E, Gebauer AM, Hofrichter M, Kellner H Draft Genome Sequence of the Sordariomycete Lecythophora (Coniochaeta) hoffmannii CBS 245.38 Genome Announc., 6
[ 2018 ] Martínez AT, Camarero S, Ruiz-Dueñas FJ, Martínez MJ Biological Lignin Degradation Lignin Valorization: Emerging Approaches. Ed. Gregg Beckham. RSC: 199-225
year2017
Protein dynamics promote hydride tunnelling in substrate oxidation by aryl-alcohol oxidase
Carro J, Martínez A, Medina M, Martínez AT, Ferreira P
Phys. Chem. Chem. Phys., 19: 28666-28675

The temperature dependence of hydride transfer from the substrate to the N5 of the FAD cofactor during the reductive half-reaction of Pleurotus eryngii aryl-alcohol oxidase (AAO) is assessed here. Kinetic isotope effects on both the pre-steady state reduction of the enzyme and its steady-state kinetics, with differently deuterated substrates, suggest an environmentally-coupled quantum-mechanical tunnelling process. Moreover, those kinetic data, along with the crystallographic structure of the enzyme in complex with a substrate analogue, indicate that AAO shows a pre-organized active site that would only require the approaching of the hydride donor and acceptor for the tunnelled transfer to take place. Modification of the enzyme’s active-site architecture by replacement of Tyr92, a residue establishing hydrophobic interactions with the substrate analogue in the crystal structure, in the Y92F, Y92L and Y92W variants resulted in different temperature dependence patterns that indicated a role of this residue in modulating the transfer reaction.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón