Optimized oxidoreductases for medium and large scale industrial biotransformations
Project Secretariat
Dr Marta Pérez-Boada
E-mail: MPBoada@cib.csic.es
Consejo Superior de Investigaciones Científicas (CSIC)
Biological Research Centre (CIB)
Calle Ramiro de Maeztu 9, E-28040 Madrid, Spain
Phone: 34 918373112
Fax: 34 915360432
Mobile: 34 650080476
Private area


Total records: 116
Pages:   1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  

[ 2018 ] Carro J, Ferreira P, Martínez AT, Gadda G Stepwise Hydrogen Atom and Proton Transfers in Dioxygen Reduction by Aryl-Alcohol Oxidase Biochemistry, doi: 10.1021/acs.biochem.8b00106
[ 2017 ] Acebes S, Ruiz-Dueñas FJ, Toubes M, Saez-Jimenez V, Pérez-Boada M, Lucas F, Martínez AT, Guallar V Mapping the Long-Range Electron Transfer Route in Ligninolytic Peroxidases J. Phys. Chem. B, 121: 3946-3954
[ 2017 ] Alcalde M When directed evolution met ancestral enzyme resurrection Microbial Biotechnol., 10: 22-24
[ 2017 ] Ayuso-Fernández I, Martínez AT, Ruiz-Dueñas FJ Experimental recreation of the evolution of lignin-degrading enzymes from the Jurassic to date Biotechnol. Biofuels, 10: 67
[ 2017 ] Carro J, Martínez A, Medina M, Martínez AT, Ferreira P Protein dynamics promote hydride tunnelling in substrate oxidation by aryl-alcohol oxidase Phys. Chem. Chem. Phys., 19: 28666-28675
[ 2017 ] González-Pérez D, Alcalde M The making of versatile peroxidase by directed evolution Biocatalysis and Biotransformation, doi: 10.1080/10242422.2017.1363190
Delignification and Saccharification Enhancement of Sugarcane Byproducts by a Laccase-Based Pretreatment
Rencoret J, Pereira A, del Río JC, Martínez AT, Gutiérrez A
Sustainable Chem. Eng., 5: 7145-7154

Sugarcane bagasse and straw, two major agro-industrial byproducts generated by the sugarcane industry, contain significant amounts of carbohydrates that can be hydrolyzed and then converted into ethanol or other valuable compounds. However, access to them is limited by the presence of lignin, a recalcitrant polymer that protects cell-wall polysaccharides from enzymatic hydrolysis. This work demonstrates the ability of an enzymatic pretreatment, based on the laccase from Pycnoporus cinnabarinus, and 1-hydroxybenzotriazole as mediator, to remove and/or modify lignin in sugarcane bagasse and straw residues, improving their subsequent saccharification. Up to 27% and 31% decreases of relative lignin content in ground sugarcane bagasse and straw, respectively, were achieved by the laccase-mediator pretreatment followed by alkaline peroxide extraction. Moreover, the lignin removal directly correlated with improvements in enzymatic saccharification, increasing glucose releases by around 39% and 46% for bagasse and straw, respectively, compared with those of the corresponding controls. Lignin depolymerization and degradation were made evident in the 2D-NMR spectra by a significant reduction in the number of aliphatic side chains involved in the main β-O-4′ and β-5′ interunit linkages, together with a remarkable removal of p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) lignin units as well as the associated p-coumarates and ferulates, with respect to polysaccharides.

Official webpage of indox [ industrialoxidoreductases ]. Optimized oxidoreductases for medium and large scale industrial biotransformations. This project has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under Grant Agreement nº: FP7-KBBE-2013-7-613549. © indox 2013. Developed by garcíarincón